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Abstract—Particle accelerators are host to myriad nonlinear
and complex physical phenomena. They often involve a multitude
of interacting systems, are subject to tight performance demands,
and should be able to run for extended periods of time with
minimal interruptions. Often times, traditional control techniques
cannot fully meet these requirements. One promising avenue is to
introduce machine learning and sophisticated control techniques
inspired by artificial intelligence, particularly in light of recent
theoretical and practical advances in these fields. Within machine
learning and artificial intelligence, neural networks are partic-
ularly well-suited to modeling, control, and diagnostic analysis
of complex, nonlinear, and time-varying systems, as well as sys-
tems with large parameter spaces. Consequently, the use of neural
network-based modeling and control techniques could be of signif-
icant benefit to particle accelerators. For the same reasons, particle
accelerators are also ideal test-beds for these techniques. Many
early attempts to apply neural networks to particle accelerators
yielded mixed results due to the relative immaturity of the tech-
nology for such tasks. The purpose of this paper is to re-introduce
neural networks to the particle accelerator community and report
on some work in neural network control that is being con-
ducted as part of a dedicated collaboration between Fermilab and
Colorado State University (CSU). We describe some of the chal-
lenges of particle accelerator control, highlight recent advances
in neural network techniques, discuss some promising avenues
for incorporating neural networks into particle accelerator con-
trol systems, and describe a neural network-based control system
that is being developed for resonance control of an RF electron
gun at the Fermilab Accelerator Science and Technology (FAST)
facility, including initial experimental results from a benchmark
controller.

Index Terms—Adaptive control, artificial intelligence, control
systems, machine learning, neural networks, particle accelerators,
predictive control.
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I. INTRODUCTION

P ARTICLE accelerators are host to myriad complex and
nonlinear physical phenomena. Adding to this inherent

complexity, they often involve a multitude of interacting sys-
tems, exhibit long-term process cycles, and endure changes in
individual machine components over time. In addition, they are
often subject to tight tolerances on beam parameters and other
performance metrics, and it is often desirable for them to run
for extended periods of time with minimal interruptions. In
addition, many particle accelerators are concurrently support-
ing a variety of request-driven or cyclic processes (i.e. they are
often not running in a steady-state condition). There will also
inevitably be deviations between the system design, numerical
or analytic physics-based simulation models, and the installed
system. Finally, as increasingly high-intensity, high-energy, and
high-gradient accelerators are built that fundamentally rely on
increasingly complex/nonlinear phenomena, traditional con-
trol techniques become inadequate in some domains. Taken
together, this leaves us with many challenges for designing con-
trol systems that will reliably meet performance demands for
both present and future accelerators.

These challenges can become more acute for applications
of particle accelerators in medicine, industry, and defense.
These applications range from relatively well-established use
cases where increased automation and better control could
be of significant benefit (e.g. particle beam therapy for can-
cer treatment), to as-yet unrealized applications that require
substantial improvements in controller robustness, flexibility,
and/or portability before they will be feasible (e.g. compact,
high-average-power FELs for EUV lithography). Furthermore,
outside of large accelerator facilities, day-to-day reliance on
highly-skilled operators and technicians is often undesirable.

One avenue toward meeting these challenges is the incor-
poration of recently improved techniques from the fields of
machine learning (ML) and artificial intelligence (AI) into the
design of control systems for particle accelerators. In particu-
lar, techniques based on neural networks (NNs) are well-suited
to modeling, control, and diagnostic analysis of complex, time-
varying systems, and systems with large parameter spaces [1],
[2]. These techniques can be used in conjunction with actual
machine data, thereby accounting for noise, variable delays,
subtle statistical correlations, and complex effects that may not
be easily addressed a prioi. NNs can also be useful in cases
where accurate data from simulations or some other computa-
tionally intensive procedure is available, but the input-output
relationship needs to be computed more rapidly for effective
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real-time deployment. Because of their functional flexibility,
they are able to operate effectively for many different kinds of
tasks.

Here we present an overview of some challenges in particle
accelerator control, provide an overview of relevant AI con-
cepts, describe some ways in which we are applying these to
accelerators, and present an example of our work at FAST.

The remaining discussion is organized in the following
manner. Sections II.A–II.C provide an overview of some chal-
lenges encountered in particle accelerator control and collec-
tively provide the corresponding motivation for developing
AI- and ML-based control techniques for particle accelera-
tors. Section II.D highlights some of the ways in which the
skills employed by accelerator operators can be used to inform
the design of AI-based control schemes. Section II.E briefly
describes several other advanced methods that the particle
accelerator community is pursuing at present to improve per-
formance. Section III provides some definitions and very basic
technical background on ML, AI, and NNs. Section IV.A high-
lights some proposed use cases for NNs in the modeling,
control, and diagnostic analysis of particle accelerators, many
of which the authors are presently pursuing or plan to pur-
sue. Section IV.B1 describes some of the developments that
have dramatically improved the practical usefulness of NNs in
recent years. Section IV.B2 highlights some previous efforts
(both successful and unsuccessful) to apply NNs and AI to
particle accelerators. Section IV.B3 provides some examples
of recent successes in other scientific and engineering disci-
plines. Finally, Section V describes some initial results and
planned work for NN-based resonance control of an RF gun
at FAST.

II. CHALLENGES FOR PARTICLE ACCELERATOR CONTROL

AND MOTIVATION FOR THE USE OF MACHINE LEARNING

AND ARTIFICIAL INTELLIGENCE

A. Preliminary Terminology

In the following discussion, we will use the term “opti-
mization” to indicate an iterative search process through which
better combinations of operating parameters are found such that
specific performance goals are better met. This could in prin-
ciple be done manually by a human operator or automatically
using a mathematical optimization routine.

We will use “control” to indicate a dedicated process encoded
by a set of rules through which a set point, series of set
points, or other set of performance goals is achieved and main-
tained despite the presence of disturbances in the machine.
“The machine,” for our purposes refers to a particle accelerator
system or sub-system.

We will use the term “tuning” as shorthand for one kind
of task that a human operator performs: adjusting a setting or
group of settings such that criteria for good performance are
met. Here, tuning is not strictly equivalent to optimization in
the sense described above (i.e. search). Rather, tuning requires
the operator to combine elements of model learning, control
policy learning, planning, and prediction as well.

Finally, the terms “online” and “offline” are used differently
in different disciplines.1 Here, we will follow typical use within
the accelerator community: “online” will indicate that a given
computational procedure is running and interacting with the
machine concurrent to operation, and “offline” will indicate a
process that does not run in this manner (e.g. using a simulation
to find optimal parameter settings prior to running the machine,
or analysis of data gathered from a diagnostic after an operating
run has been finished).

B. Challenges for Human Operators

Typically, particle accelerator systems and subsystems are
extensively simulated and optimized. Once running, data from
the machine can be used to update these offline models and pro-
vide a more accurate set of predicted optimal settings. Even
with such measures, operators will often conduct extensive tun-
ing each time the machine is put into a new operating condition
or turned on after a shut-down. This can work well for dynam-
ics that operate on a few human-compatible timescales (i.e.
ones that are not too long or too short—hundreds of millisec-
onds to tens of minutes) or that involve only a few parameters.
However, the task can become unwieldy as the dynamics
become more nonlinear or as the number of parameters and
interrelations increases. The presence of multiple timescales
of behavior can also make isolation of relevant parameters
extremely difficult.

Experienced accelerator operators can become adept at han-
dling complex dynamics and many parameters quickly, partic-
ularly on machines with which they are very familiar and/or for
tasks that are frequently repeated. However, clearly there is a
point at which even the most capable human will not be able
to efficiently and effectively synthesize all of the information
required to achieve good performance. Furthermore, machines
that require frequent changes in beam parameters or operat-
ing conditions vastly increase the number of learned control
strategies and specific procedures that operators must employ.

Ultimately, human operation is limited in the following ways:
1) Humans can only process a handful of input parameters

at once;
2) Humans can only act on a few parameters at once;
3) Humans can only operate on a relatively narrow set

of timescales, and separating multiple timescales during
problem diagnosis can rapidly become infeasible as the
number of these increases;

4) Humans are expensive and their skill levels may vary dra-
matically even in the execution of a standard procedure.

Instead, one would like to automate many of the routine
tasks historically handled by operators (preferably in a way that
does not itself require extensive, ongoing human intervention
to function properly). Time lost during tasks such as tuning
tends to be expensive, both with regard to the personnel and
energy costs incurred by running the machine and with regard

1For example, in neural network training, “online” can mean incremental
training as samples become available and “offline” can mean batch training
with a segment of previous samples—which can still occur concurrently with
the process that is producing training samples.
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to the scientific goals of researchers who are generally allo-
cated a limited amount of machine time in which to run an
experiment. As such, sufficiently automating routine tasks can
significantly improve performance in terms of the beam param-
eters achieved, time efficiency, and overall operational costs
(both in the narrow sense of cost per unit time and in the broader
sense of cost per experimental investigation).

C. Challenges for Automated Systems

Despite the limitations noted above, humans are remarkably
good at collecting disparate kinds of information and putting
them to judicious collective use in ways that are challenging
for many automated systems and traditional control techniques
to do at present.

For example, some machines have limited diagnostics, and
thus one must properly adjust a large number of variables
using just a few measureable outputs. Without the human-level
knowledge and deductive reasoning ability of the operator, it
can be very difficult to reliably automate this kind of process.
Conversely, some machines have many diagnostics that ide-
ally should be used both individually and collectively (e.g. by
extracting higher-level state information from a variety of read-
ings and generating an appropriate response). Nuances in the
way the evaluation is made in an automated system can result
in poor decisions that the designers of the system would not
have anticipated and that a human operator would have rightly
never considered.

Another example centers around planning what the next
series of actions should be given some predicted and desired
behavior. For example, systems that involve significant time
delays relative to the timescale on which adjustments must
occur, or systems that must first pass through less desirable
states to ultimately reach the performance goals, may benefit
from incorporating planning. That decision process itself can
be difficult to automate, let alone codifying the required repre-
sentations of the system dynamics in a way that is sufficiently
accurate and able to be executed quickly. The complexity
of accelerators increases this difficulty substantially. Thus, a
process that is relatively simple for an operator becomes a
challenging task for an automated system.

In taking stock of some tasks and capabilities that would
ideally be achieved with an automated system, the challenges
become more apparent. We may wish for such systems to be
able to do the following:

– Make efficient use of high-fidelity models for online use
in control routines (e.g. for prediction/planning or for
filling in details on behavior for which diagnostics are
unavailable);

– Create models that can be continuously adapted to match
the real machine;

– Identify and compensate for long-term process cycles
and drift (due to hardware aging, incremental component
replacements, and slowly varying dynamics that are not
accounted for in other ways);

– Compensate for deviations from the ideal design, such as
noise, misalignment, and deleterious effects arising from
system interactions;

– Quickly distill large amounts of data into useful
information, even for cases where data analysis is not
straightforward, so that it can be used effectively in
a control system or by an operator—this is applies to
both system-wide higher-level diagnostic analysis and
readings from individual components;

– Simultaneously optimize machine parameters system-
wide to maximize overall performance metrics, as opti-
mizing just one subsystem or set of parameters may
produce undesirable results overall;

– Perform rapid adjustment of settings in the face of new
operating conditions (e.g. new beam parameters);

– Take pre-emptive control actions where necessary and
find a good series of future control actions to achieve a
desired set of predicted outputs;

– Strictly adhere to hard constraints and allow reasonable
violation of soft constraints.

D. Expanding the Scope: Artificial Intelligence and Neural
Networks

When trying to achieve human-level performance in a given
task, it is useful to think about what the human operator does in
that context. Often, significant advances can be made by criti-
cally examining the real-world human problem solving process
and breaking it into constituent parts for a given task. Take, for
example, a recent advance in NN-based recognition of written
characters that significantly outperforms competing methods,
even with far fewer training examples: the key insight was to
incorporate a process through which the NN learns to mimic
the way a human learns to produce letters in the first place,
i.e. “learning to learn,” rather than simply providing extensive
training on a large data set of examples [3]. Thus, a human-
inspired process that at first might seem tangential to a typical
character recognition task was in fact of substantial importance
for achieving improved performance.

In the context of accelerator operators, we see first that the
operator has an understanding of the dynamics of the machine
(i.e. a system model) through both a theoretical understanding
of the ideal behavior of the machine and through the observed
behavior of the machine. This model is adapted through expe-
rience and can be compared with similar machines for further
insights.

Second, the operator has and uses memories of previous
states visited, actions taken, and resultant outcomes to help
them form better control policies and return to previously
visited operational states efficiently.

Third, the operator has the ability to plan a series of future
control actions based on their mental model of the machine.

Fourth, the operator can do fast data reduction, image pro-
cessing (e.g. taking visual input from a diagnostic and making
inferences based on it), and pattern recognition (e.g. recogniz-
ing when an instability is starting to develop).

Finally, an operator with many years of experience or deep
knowledge of a given system does not typically need to solve
partial differential equations or run a physics-based simula-
tion to have a good idea of what will happen when they
take certain actions in certain machine states, even when
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the outcome of a specific combination of states and actions
has not previously been observed—they have learned fast,
heuristic representations of the relevant processes that allow for
generalization beyond direct experience and memory.

Thus, operators are not merely searching for the best com-
bination of machine settings that produce the desired beam
parameters at any given time (as an online stochastic opti-
mization procedure applied directly to controllable parameters
would). They are also making predictions based on mental
models of the system, checking observed behavior against the
models to improve them over time, planning series of future
control actions, interpreting a substantial amount of diagnos-
tic information, and using present and past performance to
adjust the rules by which control decisions are made in vari-
ous sets of observed or inferred machine states (i.e. developing
and remembering control policies). In short, operators simul-
taneously use a combination of optimization, model learning,
planning, prediction, diagnostic analysis, and policy learning to
control the machine.

For each of these capabilities of an experienced operator,
there is an analogous set of techniques in ML, AI, and advanced
control. If we can capture some of these capabilities while also
circumventing some of the limitations of manual operation, we
can address the control challenges described earlier far more
effectively. Our work in developing NN-based control systems
for particle accelerators is specifically guided by this line of
thinking.

E. Some Other Recent Approaches Toward Achieving Greater
Automation and Improved Performance

Here, we will very briefly highlight some other advanced
modeling, optimization, and control approaches being pursued
within the accelerator community.

First, online optimization using stochastic optimization
methods is being pursued in various forms (see, for example
[4], [5]). Techniques such as particle swarm optimization (PSO)
and genetic algorithms (GAs) have been of particular of interest
[6], [7].

A promising technique based on extremum-seeking control
has recently been developed [8], [9], and it has been used for
control, optimization, and prediction of multiple parameters in
several particle accelerator applications [10]–[13].

Finally, there have been many recent advances in online
modeling for particle accelerators that significantly improve
the computation speed of high-fidelity physics-based models.
This can be accomplished through both parallelization (e.g.
GPU acceleration) and establishing a judicious balance in the
tradeoff between the speed and accuracy of the calculations
employed. A pioneering example is given in [14].

III. ARTIFICIAL INTELLIGENCE, MACHINE LEARNING,
AND NEURAL NETWORKS: BACKGROUND AND

DEFINITIONS

A. Machine Learning and Artificial Intelligence

Broadly speaking, machine learning is concerned with
improving the performance of an algorithm on some task
over time through interaction with data (e.g. learning to make

predictions about a system, learning to recognize handwrit-
ten characters, learning to detect aberrant credit card activity).
It is a sub-field of artificial intelligence, which is concerned
more generally with creating systems that are capable of behav-
ing “intelligently” (i.e. creating intelligent agents). Though the
exact definitions used within the field vary, behavior is gen-
erally considered to be “intelligent” when it includes some
combination of planning, interpreting environmental input,
self-assessment, adaptation of behavior in response to the
environment, and rational decision making.

ML and AI rely heavily on techniques from computa-
tional statistics and stochastic optimization.2 Indeed, the lines
between these fields are also very blurry, particularly as meth-
ods become increasingly hybridized.3 ML techniques also tend
to become absorbed by relevant surrounding fields once they
are well-established.4

Some typical tasks in ML include classification (categorizing
instances of data), clustering (collecting similar kinds of data
together), dimensional reduction (reducing the number of ran-
dom variables by finding and exploiting relationships between
them or mapping them to a new set of variables), and regression
(estimating relationships between variables).

Some typical frameworks for learning include supervised
learning—in which examples demonstrating correct relation-
ships are given (e.g. data with labels, such as pairs of input-
output data), unsupervised learning—in which no specifically
correct examples are given and underlying structures in the data
must be found on their own (e.g. unlabeled data that must be
grouped into similar categories without specifying what those
categories are), and reinforcement learning—in which an agent
interacts with the environment and alters its behavior based on
the “reward” it receives. Methods which combine these frame-
works, as well as more specialized learning paradigms,5 are
becoming increasingly common.

B. Reinforcement Learning

Supervised and unsupervised learning are fairly intuitive
concepts, and as such it is relatively straightforward to
understand how one might go about implementing them.
Reinforcement learning (RL), however, requires a little more
description. In a RL task, an agent learns how to respond
to its environment (i.e. it learns a policy) such that some
representation of its performance is maximized over time.

A traditional reinforcement learning scheme typically
includes the following components:

2For a simple example, consider that the connections in a neural network can
be trained using gradient descent, genetic algorithms, PSO, or any other stan-
dard stochastic optimization technique, and improvements in these optimization
techniques open the doors for increasingly complex neural network structures
to be trained efficiently and reliably.

3Take, for example, reactive search optimization (RSO) [15], [16], which
uses machine learning to automate the choice of algorithm parameters in more
traditional optimization methods.

4As one well-known researcher, John McCarthy, purportedly lamented “as
soon as it works, no one calls it AI anymore”—a sentiment echoed by many in
the field.

5For example, take transfer learning, which specifically focuses on how to
reliably transfer previously learned information to new situations or problem
domains. Similarly, learning to learn is inspired by the way humans optimize
the way they learn to complete new tasks through experience.
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1) A policy which maps observed system states to actions
(i.e. these are rules by which control actions are chosen);

2) A reward function that delivers a scalar value indicat-
ing how “good” the environmental response to the chosen
behavior is;

3) A means of estimating long-term future expected rewards
for given states or state-action pairs (in other words, a
value function); in this way, the long-term value of a given
state transition can be assessed, including the benefit of
accessing “better” states later on by entering “worse”
states in the interim.

By observing states, choosing actions, and assessing the effi-
cacy of those actions over time, the agent eventually learns
to choose actions such that the highest long-term reward is
received. Some architectures for RL also use and/or develop a
process model of the system to facilitate planning and learning.

There are a variety of ways in which the elements above can
be computed, learned, and stored. The way in which they relate
to one another in any given RL scheme also varies considerably.
Some methods, for example, take the policy being followed
into account during learning of the value function, whereas oth-
ers do not. A good overview of the basic schemes and further
discussion can be found in [17], [18], and discussion on NN
implementations specifically can be found in [19].

Note that RL can be re-framed as a stochastic optimization
problem in which one is searching the policy space directly.
In particular, there is general interest in applying evolutionary
computation methods to RL problems; however, the various
merits of each approach have long been a subject of debate
within the RL community. For some discussion, see [20].

C. Artificial Neural Networks

Artificial neural networks (NNs) are particularly appealing
tools for completing machine learning tasks and for creat-
ing intelligent agents. They are universal function approxi-
mators [21], [22] that are tailored specifically for a given
task/computation. As such, they are highly flexible and are in
principle able to operate effectively in many different situations
and serve many different purposes.

In its simplest form, a NN consists of a collection of func-
tions with weighted connections between them. These weighted
connections can be adjusted (“trained”) until a desired output
behavior is achieved, typically through an automated optimiza-
tion procedure. Elements of the network structure itself (for
example, the number of nodes and layers), can also be adjusted
as part of training.

NNs can be trained entirely from simulation data, entirely
from measured data, or from a combination thereof. There
are numerous architectures and training methods that are each
suited to different kinds of problems (for an introduction, see
[23]). For accessible overviews of basic concepts in NN-based
control, see [24], [25].

IV. NEURAL NETWORKS FOR PARTICLE ACCELERATORS

A. Some Proposed Use Cases

In the context of modeling, diagnostic analysis, and control,
there are many ways in which NNs can be used, and many of

these are highly relevant to particle accelerators. Here, we pro-
pose some specific use cases of NNs that may be of interest
to the particle accelerator community. The authors are actively
pursuing several of these approaches.

1) As an Identified System Model for Control or Simulation:
NNs are able to account for characteristics of systems which
(a) involve many interactions between a large number of param-
eters, (b) are not able to be realistically or completely mod-
eled through analytic or standard simulation-based methods
(due to practical considerations or limitations in the theoret-
ical framework), and/or (c) vary significantly over time or
involve behavior over multiple timescales. NN models can be
deployed directly in model-based control routines. One area
where NN-model based control is particularly appealing is in
predictive control for accelerators, especially for subsystems
where time delays and difficult-to-characterize behaviors are
present.

In addition to simply creating a static model generated using
previously gathered data, these models can be automatically
updated over time to account for changing behavior due to drift
or intentional changes in basic operating conditions. This can be
done continuously, on a pre-set schedule, or when triggered by
a specific event (such as a spike in modeling error). NN models
can also be trained initially using data from an existing model
or simulation first to speed up learning of un-modeled behavior
once measured data is obtained.

NN models can also be used just as any other machine model
might be (e.g. simulation for control design, simulations for
experiments being planned for an existing machine, simulation
of adjacent subsystems in the presence of new components).

2) As a Fast Stand-in for a Computation Whose Speed
Usually Limits Real-Time Deployment: Because the compu-
tation time for a trained NN is generally quite fast, they could
be useful in cases where some known input-output relationship
needs to be computed more rapidly for real-time deployment.
For example, a NN model could be trained on high-fidelity
physics-based simulation data and used as a fast, accurate
stand-in for the full physics-based model.

Similarly, a NN could be trained by example to complete
a computationally intensive control calculation or diagnos-
tic procedure. For example, NNs can be trained to approx-
imate the optimization procedure used in model predictive
control to determine a future series of control actions [26],
[27], thus enabling rapid computation of solutions during
operation.

3) As a Way of Doing Fast, Sophisticated Diagnostic
Analysis and Feedback: NNs trained to do classification, fea-
ture selection, and dimensional reduction could be used both
for individual diagnostics and for collective higher-level control
and machine protection.

For example, one could imagine a NN classifier that is
used with an image-based accelerator diagnostic to sensitively
identify when an undesirable beam instability is starting to
develop, perhaps long before the effect is large enough for an
operator to notice it.

NNs could also be used to provide bunch-to-bunch analy-
sis and feedback, particularly if implemented in hardware or
firmware. This avenue of study could prove to be particu-
larly advantageous for accelerator systems with high repetition
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rates that require fast processing of diagnostic information and
controller reactions.

4) As a Means of Codifying and Executing an Existing Policy
that is Not Already Codified: For example, one could train a
NN to mimic the observed behavior of an operator to automate
some routine tuning task.

5) As a Means of Improving an Existing Controller or
Optimization Scheme: NNs could be trained to mimic an exist-
ing controller or model and then improve upon its behavior
through additional training during operation. This could be use-
ful in cases where a traditional controller performs somewhat
adequately but needs some small unknown adjustments.

NNs can also act as an adaptive “helper” function on top
of another controller or model (e.g. as an adaptive addition to
PID gains, or a nonlinear term on top of a linear model). As
such, NN-based controllers can work in tandem with traditional
control techniques to improve performance.

It is also useful to note that approaches using ML for self-
tuning of optimization algorithm parameters are now appearing
in the literature (e.g. see [15]). Such hybrid approaches to
optimization could be readily put to use by the accelerator
community in existing applications of online optimization.

6) As Part of a Tool to Learn and Execute a New Control
Policy: NNs can be used to develop a control policy from
scratch by examining the success of individual actions over
time. In this way, instead of relying on an operator or an exten-
sive control design procedure, the NN can discover the best way
to interact with the machine. As with NN models, the solution
that is finally deployed can be static or adaptive.

The main advantage of using NNs in this case (as opposed to
other approaches used in the reinforcement learning) is that they
enable continuous-valued functions to be estimated, enabling
better generalization, and they can more efficiently represent
the information that needs to be stored for large parameter
spaces [18]. Their use also confers some added flexibility in
the architecture: for example, one might have a joint actor/critic
NN, as opposed to having two separate modules. Similarly, their
ability to be trained as both models and as controllers can aid
the process of learning in the latter capacity. For a particularly
novel example of this, see [123], in which a pre-training step
consisting of model learning is used to speed up learning of the
value function in a NN-based RL control scheme.

B. Historical Impediments and Recent Advances

1) Recent Advances in Neural Networks and Their
Deployment: Neural networks have a somewhat tortured his-
tory, including a long series of boom-and-bust hype cycles.
Early attempts at real-time control of complex systems with
large parameter spaces using NNs were met with limited
success, primarily due to issues with long computation times,
a lack of sufficiently powerful architectures, and algorithmic
instabilities. In the former case, early potential applications
were limited by the computational speed of these techniques
relative to the speed of the system dynamics to be con-
trolled. Early attempts to apply these techniques in real-time
to complicated problems were thus inherently limited, as only
simple algorithms and structures could be investigated in the
available time. These simplistic, early algorithms were also

highly sensitive to small, arbitrary changes in input data (e.g.
noise), preventing the robust generation of solutions. In the
interim, advances in the theoretical underpinnings of NNs
have removed many of the previous impediments that once
caused many would-be practitioners to abandon attempts to
use NNs for control of complicated systems like particle
accelerators.

Several major developments have since removed or mitigated
many of these difficulties. First, improvements in computing
technology over the past two decades have made success-
ful implementation of more complicated NN structures and
their training algorithms feasible in real-time applications. Such
advancements have also greatly increased the speed of training
in general, allowing much larger training data sets to be used in
practice.

These improvements in computing have also allowed ever-
larger data sets to be easily collected and stored. Along with
this, the rise of the internet has enabled large stores of data to
be accessed and shared by researchers world-wide, which both
facilitates basic research and rigorous comparisons of algorithm
performance.

In addition, many advances have been made in implement-
ing NNs in hardware/firmware, such as FPGAs (e.g. see [28])
and neuromorphic chips. These include cutting-edge, high-end
developments driven by large companies like IBM [124] as
well as the production of more accessible commercial prod-
ucts (e.g. see General Vision’s “BrainCard” [125]). A historical
review on neuromorphic hardware can be found in [126], and
an example of a comparative experimental study can be found
in [127].

Next, beneficial co-developments in related fields such as
stochastic optimization and computational learning theory have
enabled more powerful learning algorithms to be developed.
Similarly, advances in reinforcement learning, optimal control,
adaptive control, and nonlinear control have facilitated suc-
cessful deployment of NNs within these frameworks (e.g., see
nonlinear model predictive control [121]). General theoretical
research in the area of NN-based nonlinear control techniques
also has been aimed at mitigating the issue of system stability
(see [29]–[32]).

Critically, much theoretical work over the past two decades
has been devoted to understanding the behavior NNs and devel-
oping more sophisticated architectures and associated training
methodologies (see, for example, the more modern architec-
tures described in [35]). Along with this, the growing body
of experience with specific real-world applications has both
informed theoretical developments and resulted in empirically-
derived improvements in implementation and training proce-
dures. The past five years have been particularly fruitful in
this regard. Comprehensive reviews of these developments
are given in [33], [34]. Some particularly important examples
include:

– The introduction of selective data dropout techniques
during training to reduce over-fitting [36];

– The introduction of an initial unsupervised learning stage
in multi-layered, feed-forward NNs to capture data fea-
tures and form progressively higher-level representa-
tions for subsequent layers prior to supervised learning
[37]–[40];
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– Improvements in the training of recurrent NNs (RNNs)
[41], [42], which contain recursive connections to enable
representation of more complicated sequence-dependent
dynamics (these recurrent connections also introduced
additional mathematical difficulties for gradient-based
training algorithms [43], [44]);

– The development and advancement of long short term
memory (LSTM) RNNs and their associated training
techniques [45]–[50], which can be used to more effec-
tively represent long-term dependencies than many other
architectures;

– GPU-accelerated training of convolutional NNs (CNNs)
[51], which are designed to take more complete advantage
of relationships within 2D input data (for example, they
have substantially improved the state of the art in image-
oriented tasks such as object recognition and speech
recognition—where a 2D time-frequency representation
is often used);

– The development of advanced neuroevolution methods
such as NEAT and HyperNEAT [52].

Combined, these broad areas of advancement have enabled
significantly more complicated problems to be effectively
addressed both in theory and in practice.

2) Previous Efforts to Apply Neural Networks to Particle
Accelerator Control: The idea of applying artificial intelli-
gence and neural networks to particle accelerators is by no
means a new one (e.g. see [53]–[57]). During an initial wave
of interest during the early/mid-1990s, these efforts obtained
mixed results. This quickly led to stagnation of efforts to apply
AI to particle accelerators. A summary of work in this area up
until 2008 is provided in [58].

As part of one notable dedicated effort in the mid-1990s,
Vista Control Systems and University of New Mexico collab-
orated on the development of an AI-based beamline tuning
prototype [59]–[62]. Several studies also demonstrated the
implementation of a distributed AI system for fault detec-
tion and management [63], [64]. Several recent (2012–2013)
simulation-based studies propose some multi-agent designs for
orbit control, beamline tuning, and mitigating the impact of
sensor failures [65]–[67].

During the 1990s to mid-2000s, NNs in particular were
investigated for orbit/trajectory control [68]–[72], with mixed
results. Also during this time, a NN was successfully imple-
mented to detect faulty beamline and diagnostic components
[73]. In the early 1990s at Los Alamos, a NN-based PID tuner
for a low level RF system was implemented [74]. Also at Los
Alamos, several neural network schemes were used to control a
negative ion source [75]–[77].

In work conducted at the Australian Synchrotron and the
Linac Coherent Light Source, members of our group demon-
strated the use of a combined NN and PI controller to compen-
sate for jitter in the upstream klystron phase and voltage using
downstream corrections, thus stabilizing electron beam energy
and bunch length [78], [79]. In that control scheme, a NN
was used to predict future beam parameter deviations so that
an appropriate correction could be applied. In another study,
a multi-agent NN tuning tool was used to optimize machine

settings for reduced electron beam energy spread and increased
transmission at the Australian Synchrotron Linac [80]. This
optimization agent was then used in a control experiment at the
FERMI@Elettra FEL to stabilize beam energy.

3) Some Successes in Other Science and Engineering
Disciplines: Numerous examples of successes in using mod-
ern neural networks for various tasks are provided in [33] and
[34]. Here we will specifically highlight a few examples that
intuitively relate to the problems found in modeling, diagnostic
analysis, and control of particle accelerators.

First, NN-based techniques to automatically process compli-
cated measured scientific data have seen great success in recent
years. For example, they have become useful tools in the analy-
sis of astronomical data (e.g. see [81]–[85]). Some applications
include image-based object classification from sky surveys and
rejection of artifacts and interference in astronomical data.
NNs have also proven useful in the analysis of data generated
by high-energy particle physics experiments [86]–[88], which
require detection and analysis of statistically improbable events
from data sets with high backgrounds for event selection and
particle identification.

Moving toward the application of NNs to real-time analysis
of complex machines, an instructive example can be found in
the recent literature surrounding fault prevention in tokamaks—
a type of magnetic confinement device that is a promising
candidate for thermonuclear fusion-based power production.
In studies conducted within the last four years at the Joint
European Torus, NNs have shown promise in the modeling
of tokamak behavior [89], [90], in instability detection [91],
[92], and in disruption prediction [93], [94]. Furthermore, real-
time early detection of potentially problematic features such as
hot spots or instabilities through the use of NN-based classifi-
cation of video frames has been demonstrated experimentally
[95], [96].

More generally, examples of NN applications in industrial
control include the regulation of nonlinear chemical mix-
ing processes [97]–[99], parameter/process optimization in
manufacturing to achieve specific material properties [100]
and greater product consistency [101], temperature control of
variable-frequency systems with nonlinearities and time delays
[102], [103], optimization for energy savings in the tempera-
ture control of buildings [104], self-tuning in traditional control
schemes such as PID [105], and process optimization for
reduced operating costs [106]. For a survey of reinforcement
learning results in robotics, see [107]. Approaches that specifi-
cally pair advanced optimal control techniques with NNs have
also been the subject of numerous successful experimental and
simulation-based studies (see, for example, NN-based model
predictive control [108]–[114]).

V. AN EXAMPLE APPLICATION: RESONANCE CONTROL

AT FAST

The system that is used to regulate the resonant frequency
of the electron gun at the Fermilab Accelerator Science and
Technology (FAST) facility was identified as a good initial
candidate for the application of NN-based control methods.
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Fig. 1. Layout of the water system and relevant instrumentation (not drawn to
scale). T01, T02, TIN, TCAV, TOUT, and T06 are temperature sensors. The
piping is not insulated. Note that for the regions marked “long transport delay,”
the piping traverses several parts of the building that at various times may have
different ambient temperatures. The control valve and heater/mixing chamber
are located outside of the radiation-shielding cave, whereas the gun is located
inside of it.

This was due to the large thermal time constants, long trans-
port delays, and recursive behavior in the cooling system that
collectively result in long settling times and large overshoots
under PI control (these are described in parts A.2 and B below,
respectively).

The electron gun at FAST [115]–[117] is a 1 1
2 -cell copper

RF photoinjector operating at 1.3 GHz in the TM010,π mode,
and it is powered by a 5-MW klystron. It has a loaded Q of
∼ 11, 700, is water-cooled, and shows a measured 23-kHz shift
in resonant frequency per ◦C change in cavity temperature. The
gun is designed to produce 1-ms duration macropulses at a 1-Hz
to 5-Hz repetition rate, with a bunch frequency of 3 MHz. The
intended operational gradient is 40-45 MV/m, and the maxi-
mum gradient thus far achieved is 47.5 MV/m. For adequate
phase stability, existing requirements state that the tempera-
ture of the water entering the gun should be regulated to within
±0.02 ◦C [116]. At 40 MV/m and 5-Hz macropulse repetition
rate, the expected average dissipated power in the gun is 15 kW.

A. Water System Description and Control Challenges

A simplified schematic of the water system is given in Fig. 1.
The two controllable variables are 1) the flow control valve
setting (FCV) and 2) the heater power setting (HP). The T01
sensor reads the cold water supply temperature, the T02 sen-
sor reads the temperature just after the mixing chamber, the
TCAV sensor reads the cavity temperature, and the TOUT sen-
sor reads the temperature of the water leaving the cavity. The
TCAV sensor is located in the iris of the gun. Henceforth, we
will generally refer to the abbreviated names only (e.g. “T01”
indicates either “the T01 sensor” or “the T01 sensor reading”).

1) Instrumentation: A description of the instrumentation is
given in [118]. However, several important details regarding the
resistance temperature detectors (RTDs) and the associated data
acquisition process have changed.

TABLE I
TYPICAL TIME DELAYS BETWEEN SYSTEM ELEMENTS

Note that we have included transport delays as well as thermal responses; these
are typical values seen under normal system operation.

The original analog-to-digital converter (ADC) hardware
units were found to have unstable read-backs, likely due to dif-
ferences in the exact versions of the MODBUS protocol used in
those units and in the programmable logic computer (PLC) to
which they were connected. They were subsequently replaced
with RTD temperature transmitters made by Laurel Electronics,
Inc. This hardware change resulted in lower-resolution readings
in T01, T06, and T02 (0.1-◦C resolution rather than 0.01-◦C
resolution). Noise in the readings typically results in a variation
of ±0.2 ◦C. Some of the data described in later sections were
obtained under this configuration.

After several months, the conversion method for T02 was
changed again in order to achieve higher resolution. It is now
converted to a digital reading by a Fluke 8846A multimeter with
a resolution of 0.01 ◦C. The noise on the readings results in a
variation of ±0.02 ◦C. This is the same ADC setup that is used
for TIN, TCAV, and TOUT.

2) Control Challenges: For this particular system there are
several control challenges:

– Due to water transport time and thermal time constants,
long, variable time delays exist between various elements
in the system. A selection of these is shown in Table I.

– Without compensation, any change in the temperature of
the water exiting the gun (either due to a change in the
amount of waste heat from the RF power or a change
in the temperature of the water entering the gun) will
circulate back into the mixing chamber and have a sec-
ondary impact on the cavity temperature. This results in
a minutes-long, damped oscillation in the temperature
of the water entering the gun. An example of such an
oscillation (under no control, i.e. open loop) is shown in
Fig. 2.

– There are fluctuations in the low conductivity water
(LCW) supply temperature. While it is nominally regu-
lated to within ±0.5 ◦C, larger spikes do occur, especially
during operation of other large heat sources in the wider
system at FAST (e.g. the cryomodule high-level RF sys-
tem is cooled by the same LCW supply that cools the RF
gun).

– The pipes through which the water flows are not insulated
and pass through several different areas of the building.
Additionally, the closest ambient air temperature sensors,
which read the south cave temperature and south hall tem-
perature, show variations of several degrees day-to-day
and more than 15 ◦C over longer durations. These two
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Fig. 2. Oscillatory open-loop (uncontrolled) response in the water temperature
at T02 due to mixing of the cold supply water and the water returning from
the gun (TOUT). This oscillation was induced by reducing the heater power
setting from 7 kW to 2.5 kW for 20 seconds, after which it was returned to
7 kW. Qualitatively, the response from an increase in the flow control valve is
very similar (however, the system sensitivity to changes in the flow valve vs.
the heater power setting are different).

temperature readings are not always closely correlated.
The relationships between T02, TIN, and TCAV vary
measurably with these ambient temperatures, as does the
relationship between TOUT and T06. Occasionally the
steady state difference between TIN and T02 temporar-
ily changes without a change in the ambient temperature
readings being registered. Presumably, this is due to
highly localized variation in temperature (e.g. cooling
from a fan, heating from nearby equipment, etc.).

– Due to the TCAV sensor location and the cavity geom-
etry, the temperature recorded there will be higher than
the real bulk cavity temperature under RF power. Thus,
for resonance control using operator-specified TCAV set
points, it is important to note that the set point required to
maintain the proper resonant frequency will increase with
increasing average RF power. This is also a good reason to
regulate the measured resonant frequency directly, rather
than regulating the TCAV sensor read-back. An estimate
of cavity temperature from TIN and TOUT could be used
instead, but ultimately this is still a little circuitous rel-
ative to the end goal of keeping the gun at the desired
resonant frequency.

B. Description and Assessment of the Existing
Feed-forward/PI Loop

Presently, the cavity temperature is regulated using a feed-
forward/proportional-integral (PI) controller that was devel-
oped at Fermilab by P. Stabile (one of the authors). The
feed-forward component is used to initialize the controller. It
determines an appropriate flow control valve setting based on
the RF power parameters and the expected cooling power of the
water. It then continuously adjusts the valve setting such that a
desired TCAV set point is reached, and the heater power level
is kept at a constant setting. An older version of the controller
and its performance is described in [118].

The response of the controller to a 1-◦C step change in
the set point under no RF power is shown in Fig. 3. The
∼ 0.6-◦C initial overshoot, the subsequent oscillations, and
the long settling time are due to the combined effect of the
long time delays and the recirculation of the water through

Fig. 3. A 1-◦C step change under the existing feed-forward/PI controller. Note
that the oscillations are due to the time delays, thermal responses, and recurrent
effect of the water system, not a poorly tuned set of PI gains.

the system. In the instance shown, the system takes ∼ 23 min-
utes to reach a steady state. Note that this is without significant
disturbances in the supply temperature (T01).

Typically, without disturbances from the RF power or T01,
this controller regulates the TCAV temperature to within
±0.03 ◦C of the set point during steady-state operation under
RF power. The standard deviation of the TCAV temperature
over 47,132 representative data points is 0.012 ◦C. This cor-
responds to the water temperature at TIN being kept within
±0.04 ◦C of the mean temperature at steady state and a standard
deviation of 0.013 ◦C.

While this is acceptable for long periods of steady-state
operation, regulation using this controller becomes problematic
under more dynamic conditions. For example, during RF turn-
on, the overshoot results in reflected power often nearing the
threshold at which damage to ancillary components becomes a
concern. To illustrate this, we examined 8 turn-on instances.
Even with operator-mediated, gradual increase of RF power
during normal operations at ∼ 2.33-MW forward RF power,
the controller initially overshoots the TCAV set point by an
average of 0.19 ◦C (with a standard deviation of 0.02 ◦C). This
results in a mean increase in reflected power of 70.6 kW over
the steady-state value (with a standard deviation of 17.4 kW),
culminating in a total mean reflected power of 103.0 kW. An
administrative limit for reflected power at the RF window is set
to 100 kW to avoid potential damage, and reaching it prompts
the operator to turn off the gun. There is no self-excited loop
mode implemented for this cavity to circumvent this issue
during start-up.

Furthermore, in relying on manual adjustment of the TCAV
set point for resonance control, operational time constraints
combined with the long settling time make it less likely that the
gun will be put at the desired resonant frequency consistently
(and indeed, experience has borne this out).

This also reduces overall operational efficiency, as the low
level RF system increases the forward RF power in response to
the reduction in field caused by moving away from the desired
resonant frequency. In light of this, it quickly becomes apparent
that a controller capable of automatically making adjustments
in the water system until the gun is operating at the proper
resonant frequency (or some optimal distance off-resonance) is
needed.

Overall, a significant improvement in the settling time,
amount of overshoot, and disturbance rejection could be gained
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by adopting alternative control techniques. This would increase
the operational efficiency of the gun by reducing the need to
rely on the RF overhead to keep the cavity field constant,
increase the total useful machine time by reducing the time
spent waiting for the system to settle, and assist in the manage-
ment of reflected power by more tightly regulating the cavity
temperature under dynamic conditions.

C. System Characterization

The main goals for the characterization of this system were
the following:

1) Accurately identify the transport delays;
2) Quantify the combined effects of TOUT, T01, FCV set-

ting, and HP setting on T02 (and subsequently on TIN
and TCAV);

3) Quantify the combined effects of TIN and RF power on
TCAV;

4) Quantify the impact of ambient temperature on the tem-
perature differences seen within the water system and the
cavity (from TOUT to T06, from T02 to TIN, and from
TIN to TCAV).

1) Data Sets Obtained: Figs. 4–6 show a selection of the
main data sets. Variables that relay redundant information or
did not undergo significant changes are not shown.

The purpose of Set 1 (shown in Fig. 4) was to obtain data for
many combinations of FCV and HP settings. The purpose of
Set 2 (shown in Fig. 5) was to obtain data for several RF power
settings, primarily targeting the relationship between TIN, RF
heating, and TCAV. The purpose of Set 3 (shown in Fig. 6)
was to obtain larger variations in the FCV and HP settings.
Set 4 consists of changes in the temperature set point under
PI control. Set 5 (shown in Fig. 7) consists of data gathered
over several days during normal operation at a cavity gradi-
ent of 42 MV/m. The sensor replacements described earlier
(A1 Instrumentation) occur after Set 1 and Set 3. Several other
smaller data sets were also examined.

2) Influence of Ambient Temperature: The three primary
areas where thermal losses could potentially impact the system
are:

1) The water in transit from T02 to TIN;
2) The water in transit from TOUT to T06;
3) Losses from the cavity surface to air or attached

components.
Given the location of the ambient temperature sensors, their

readings give us only a rough approximation of the air temper-
atures encountered by the bare pipes. Fig. 8 shows the variation
in the south hall and south cave temperatures over the course of
several days. Fig. 9 shows the temperature difference between
TCAV and TIN as a function of the difference between TCAV
and the cave temperature.

The difference between T02 and TIN as a function of the
estimated average ambient temperature shows a much less sig-
nificant trend (the linear slope is 0.002), and the intercept
changes slightly when the gun and its associated equipment is
running, perhaps indicating that some additional local heating
is raising the temperature at TIN.

Fig. 4. Data Set 1. This consists of water system data with the gun running
at low average power (∼ 81-kW forward RF power, 200-µs pulse duration,
1-Hz repetition rate). Changes to the FCV and HP settings were made in a
pseudo-random fashion. The PI controller was not active.

3) System Under Power: Fig. 10 shows the steady state
difference between TOUT and TIN, and the steady state
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Fig. 5. Data Set 2. This consists of system data under RF power to character-
ize the relationship between the temperature of the water entering the gun, the
cavity temperature, and the RF power. For comparison with the other data sets
shown here, T02, T01, FCV, and RF power are shown. Due to operator con-
cerns about reflected power, the PI loop was enabled during this time. Note that
in between Set 1 and Set 2, the ADC hardware for some of the sensors (T01,
T06, T02) was changed, resulting in lower-resolution readings.

difference between TCAV and TIN, as a function of average
RF power. This is useful for determining what set point is
needed for TIN such that the desired cavity temperature
reading under a given average RF power level is reached (note
again that this is distinct from the real bulk cavity temper-
ature). TOUT–TIN diverges significantly from TCAV–TIN.
This demonstrates, in part, the effect that local heating from
the RF has on the iris region of the gun where the TCAV
sensor is located. At steady state, the cooling power given by
Pcool = (TOUT − TIN ) × (Flow rate [GPM]/water cooling
capacity [GPM-◦C/kW]) is balanced with the power input
to the cavity (Pcool = PIN ≈ PRFavg). This relationship is
shown in the dashed line on Fig. 10.

Fig. 6. Data Set 3. This consists of higher-magnitude changes in the FCV and
HP settings. The gun was off during this set, and the PI loop was not enabled.

C. Neural Network Modeling

In modeling the system, the primary aim was to investigate
several model structures and use these to inform the controller
design. While elements of the system can be modeled analyti-
cally or with other data-driven techniques, by using NNs we are
also setting the stage for NN-centric controllers.

The main variables examined were 1) the choice of model
inputs, 2) the combination of training data to use, and 3) the NN
architecture. In addition to training and testing with previously-
gathered data, a few studies in online updating during operation
were conducted. The following general model structures were
derived from training data and assessed:

1) A model to predict T02 from TOUT, T01, FCV, and HP
readings;
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Fig. 7. Data Set 5. This shows normal operations at ∼ 2.33-MW forward
RF power. Note that, aside from the changes in the un-powered vs. powered
state, smaller changes in the T02 temperature roughly inversely track changes
in the ambient temperatures (shown in Fig. 8). This is because the relationship
between T02 and TCAV slowly changes and the PI loop compensates for this
by adjusting the FCV setting. Note also that operation of the gun does appear
to be correlated with some variation in the LCW temperature (T01).

2) A model to predict TCAV from TOUT, T01, FCV, HP, and
RF power readings;

3) A model to predict TCAV from TIN and RF power
readings, and a similar model that uses T02 instead of
TIN;

4) A model to predict T02 that also includes the south cave
and south hall temperature readings as inputs.

Note that these models were developed in parallel with both
control development and analysis of the impact of ambient tem-
perature. In retrospect, it is likely that ambient temperature
is needed only for the TCAV model. Because the benchmark

Fig. 8. Variation in ambient air temperature over several days. A greater range
of variation does occur over longer timescales.

Fig. 9. Temperature difference between TCAV and TIN, relative to the temper-
ature difference between TCAV and the ambient air temperature reading.

Fig. 10. Difference between TIN and TCAV sensor readings, as well as TOUT
and TIN sensor readings, as a function of RF power at steady state. The data
were recorded at relatively constant cave temperature and a constant flow of
water to the gun at 14.5 GPM.

controller (described later) primarily relies on a T02 model, a
TCAV model with ambient temperature included as an input
has not yet been constructed, but likely will be.

1) Data Preprocessing: The mean values were subtracted
from the data, and the data were scaled to a range of ±0.5. The
2.44-◦C offset in T02 for Sets 1–4 relative to Set 5 was adjusted
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Fig. 11. Simplified illustration of the T02 NN model inputs and outputs. A
series of n previously measured samples are provided. Initial previous inputs
are delayed by an amount d governed by system dead times.

for by subtracting it from the measured values. In addition, a
zero-phase digital filter was applied to T02 readings for data
sets containing the noisier, lower-resolution data. The remain-
ing data were not filtered. This produced more consistent results
than either excluding any filtering procedure or filtering all of
the data and using incremental filtering during online testing.

2) Training Procedure: The training procedure described
applies to all trials for ruling out different model input-
output structures and NN architectures. The training data were
used to teach the NN the proper input-output relationship
via supervised learning. In this case, the Broydon-Fletcher-
Goldfarb-Shanno (BFGS) algorithm, a popular quasi-Newton
optimization method for unconstrained nonlinear problems,
was used to find the optimal weights and biases of the net-
work. During training, every other input-output pair was used
for calculating weight updates, while the remaining data were
used for validation (i.e. assessment during the training process).
Validation data are used to ensure that the solution is gener-
alizable (i.e. the model is not over-fitted to the training data
and the proper relationships have been learned). The predic-
tive performance on the testing data was used to assess the
models, both in one-step-ahead prediction and in larger pre-
diction horizons (20–200 steps ahead). To help ensure that the
particular training algorithm used was not skewing the results
significantly, results were compared with those obtained using
the Levenberg-Marquardt algorithm (LMA).

For each candidate model architecture and set of inputs,
multiple individual networks were trained and subsequently
tested on the remaining data sets. This helps to ensure that
the network architecture and configuration of the training data
itself is responsible for the performance, rather than a single
exceptionally poor or good solution.

It was found that there were various merits to training on
Set 1 (which had higher-resolution T02 readings and contained
a variety of flow valve and heater setting combinations but
also consisted of relatively small adjustments) and on Set 3
(which had fewer, but higher-magnitude adjustments and lower-
resolution T02 readings). The best performance was obtained
when the networks were trained first on Set 1 and then subse-
quently trained on a portion of Set 3 (with the rest of Set 3 being
reserved for testing along with the remaining data sets). This is
likely due to the fact that Set 3 had higher-magnitude changes
than Set 1, but Set 1 had lower noise on the readings and thus
the initial learned relationship had higher sensitivity to small
changes in input parameters. Set 1 also consisted of many more

TABLE II
AVERAGE PERFORMANCE OF SELECTED NN MODEL DESIGNS

Table II shows the performance of several NN model designs. For the best-
performing network out of each model category, the average absolute error
across all prediction instances in all of the data sets is reported, along with
the standard deviation. The maximum error out of all data sets is also reported.
For TCAV, the performance with and without RF power is reported separately.
“Linear” and “Sigmoid” denote the activation function types.

individual training examples than Set 3, so training on the latter
likely does not impact the final solution as much as the former.
For the TCAV models, additional training was also conducted
with a selection of data from Set 2 under RF power.

3) Neural Network Structures and Model Inputs: Starting
with a simple approach, a feed-forward architecture was
adopted. Because the time delays can vary, a short series of pre-
vious values is given for each input. For long transport delays,
only relevant values are provided (i.e. dead time is removed by
introducing a delay in the inputs).

For the T02 models, the best performance was obtained when
the NN was provided with 15 prior seconds of FCV, HP, and
T01 readings, and 30 seconds of prior TOUT data. The TOUT
data inputs are delayed by 50 seconds and interspersed at a var-
ied interval such that the 60–70 second range is represented
more heavily (the intervals were determined experimentally). It
was also found that the T02 models generally performed better
when excluding the ambient temperatures. In addition, better
solutions for long-term future predictions were obtained when
excluding previous values of T02 as an input (thus forcing the
NN to really learn the relationships between T02 and the other
input variables, rather than relying on autocorrelation).

For the T02 models, a variety of configurations were exam-
ined (including variations in the number of layers, the number
of nodes in each layer, and the type of activation functions
used). Out of these, the best performing models used two hid-
den layers, with 20 hidden nodes in the first layer and 5 hidden
nodes in the second layer. The nodes in the hidden layers use an
approximate hyperbolic tangent sigmoidal activation function,
given by f(x) = 2/(1 + e−2x)− 1.

The performance of the best models is given in Table II. The
T02 models were the most extensively trained and vetted, and
the final T02 model performs well across all data sets. The
best-performing full TCAV model is very close in structure
to the T02 model. Without power, it performs better than the
T02 model (even without ambient temperature included). This
may be due to the sets of lower-resolution T02 measurements
included in training the latter, or due to the fact that TCAV is
less susceptible to oscillations and noise in the water system
because of its large thermal mass. In testing the TCAV models
under RF power, there were steady-state offsets in the predicted
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output. Additional training under a greater variety of RF power
levels would be needed to improve this.

E. Control Over the Water System

Eventually, the aim is to have a NN controller that adjusts the
FCV and HP settings such that the desired resonant frequency
or some optimal amount of detuning is achieved. An additional
aim is to control the rate at which RF power is brought up to its
operational level during turn-on.

Establishing satisfactory control of the water temperature at
the cavity entrance is the first step toward ensuring the gun is
kept at the proper resonant frequency. Because the long trans-
port delays and recursion in the water system are a major
challenge for the feed-forward/PI controller, it makes sense to
address this problem individually before moving on to a com-
plete controller. Furthermore, while the cavity temperature (as
reported by the TCAV sensor) is just an intermediate variable
when considering the final goal, framing an initial controller
around the water entering the gun and TCAV enables direct
comparison with the existing feed-forward/PI loop.

As such, we aimed to design a modular controller that could
be altered with ease to fit either TCAV-oriented regulation
or resonant frequency-oriented regulation. The base controller
regulates the temperature of the water entering the gun by mod-
ulating the FCV and HP settings. This controller can then be
nested within another control loop that determines what the
water temperature needs to be in order to either a) directly min-
imize the detuning or b) achieve an operator-specified cavity
temperature set point.

F. Benchmark Controller for the RF Gun

First, we developed a simple benchmark controller for the
water system. This serves two purposes: 1) it provides a more
suitable benchmark than feed-forward/PI by which to judge the
performance of more advanced NN controllers, and 2) it pro-
vides an initial policy that a NN can be trained to mimic and
improve upon.

Because of the long time constants, the effect of the water
returning from the gun, and the presence of two controllable
variables, a model predictive control (MPC) [119], [120], [121]
scheme is appealing. In MPC, a system model and an optimiza-
tion algorithm are used in conjunction to determine an optimal
sequence of future controller actions such that the target out-
put is reached within some future time horizon, subject to the
satisfaction of any defined constraints. Such a scheme is useful
for compensation of delayed system behavior. In addition, if a
series of future set points is known in advance, the controller
can act anticipatively. Figs. 12 and 13 illustrate the basic con-
cept of MPC. Because MPC relies on repeatedly computing an
optimal future trajectory for a series of future time steps, there is
a substantial tradeoff between model complexity and the ability
to obtain a good solution within the control interval.

1) Controller Structure: T02 was chosen as the variable
to control for the benchmark system. The basic structure of
the benchmark MPC is shown in Fig. 14. First, the opera-
tor provides a TCAV set point, which is then translated into

Fig. 12. The basic concept of model predictive control.

Fig. 13. The basic elements of a model predictive control scheme. Np is the
prediction horizon, Nm is the number of previous measured values used for
modeling, k is the present time step, Nc is the control horizon, ucv are the
controlled variables, um are measured variables, and yp is the predicted plant
output.

an approximate T02 set point by exploiting the relationship
between average RF power, T02, and TCAV. The MPC then
manipulates the FCV and HP settings such that the desired T02
trajectory is obtained.

By monitoring temperature changes in the water leaving the
gun, the controller can compensate for them before they reach
T02. Monitoring TOUT provides plenty of time for actuation
of the heater to take effect. By also monitoring T01 and using
this as a model input, adjustments can be made to compensate
for fluctuations in the LCW supply temperature. One critical
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Fig. 14. Conceptual structure of the benchmark MPC for temperature control
of the RF gun.

weakness of this design is that the ambient temperature can
affect the relationship between T06 and TOUT, and at present
this is unaccounted for (e.g. by model updating or an adaptive
offset on the TOUT input).

For the optimization of future controller actions, the cost
function is defined by the weighted rate of controllable variable
changes, the weighted discrepancy between the present pre-
dicted output trajectory and the output reference trajectory, the
weighted discrepancy between the desired trajectory of control-
lable variables and their present trajectory (if applicable), and
the weighted degree to which any constraints are violated. Each
of these terms is evaluated over the entire prediction horizon. If
desired, small constraint violations are allowed via constraint
softening. The general formulation for the cost function at
time-step k for one output variable is given by:

∑ncv

j=1

∑Np−1

i=0
{w1,j [uj (k + i)− uj (k + i− 1)]}2

+
∑ncv

j=1

∑Np−1

i=0
{w2,j [uj (k + i)− uj,ref (k + i)]}2

+
∑Np

i=1
{w3 [yr (k + i)− yp (k + i)]}2 + w4b, (1)

where w1,j is the weight for rates of change in the jth control-
lable variable, w2,j is the weight for the jth controllable vari-
able target trajectory, w3 is the weight for output variable target
trajectory, w4 is a penalty weight for constraint softening, Np is
the prediction horizon, i is a future time step, yr is the reference
trajectory, yp is the predicted output, k is the present control
step, uj is jth the controllable variable value, uj,ref is the refer-
ence trajectory for the jth controllable variable, b is a measure
of constraint violation, and ncv is the number of controllable
variables. For i = 1 : Np, the constraints are given by:

ymin − baymin ≤ y (k + i) ≤ ymax + baymax

uj,min − bauj,min ≤ u (k + i− 1) ≤ uj,max + bauj,min

Δuj,min − baΔuj,min
≤Δuj (k+ i− 1) ≤Δuj,max + baΔuj,max

(2)

TABLE III
BENCHMARK MPC PARAMETERS

where Δuj is the change in the jth controllable variable,
auj,min

and auj,max
are variables for constraint softening for

the jth controllable variable limits, aΔuj,min
and aΔuj,max

are
variables for constraint softening for the jth controllable vari-
able movement, aymin

and aymax
are variables for constraint

softening for the output variable limits, and b is a slack variable.
2) Implementation: For the benchmark MPC, we were only

concerned with getting a rough idea of how well a simple
MPC system might perform compared with the existing feed-
forward/PI loop. To this end, we linearized the NN model
around the present operating point at each time step and used
the sequential quadratic programming solver QPKWIK [122].

In the benchmark controller, all constraints were hard
(i.e. auj,min

= auj,max
= aΔuj,min

= aΔuj,max
= aymin

=
aymax

= 0), and y was unconstrained. Because there is no
constraint softening, w4 was set to 0. Finally, there is no
specifically desired controllable variable trajectory; as such,
w2 was also set to 0. Through a combination of simulation and
testing on the gun, a set of the remaining MPC parameters that
achieve reasonably good performance were obtained. These
parameters are given in Table III.

A rudimentary NN model was used to translate between the
TCAV set point and the T02 set point. One could instead use
the simple steady-state relationship, but we wanted to capture
the dynamic response as well.

3) Performance: Fig. 15 shows the performance of the
benchmark MPC for a 1-◦C step change in the TCAV set point.
The settling time is ∼ 5x faster than that of the pre-existing
feed-forward/PI loop, and there is virtually no overshoot. After
the step command for the cavity is issued, the MPC brings T02
to within ±0.02 ◦C of its respective set point in about 3 min-
utes. Correspondingly, TCAV is brought to within ±0.02 ◦C of
its set point in about 5 minutes. While the transient behavior in
this instance is clearly an improvement over the transient behav-
ior of the PI loop, additional data is needed to fully characterize
both the transient and steady state performance.

Note that the scales in Fig. 15 are smaller than those shown
for the feed-forward/PI controller in Fig. 2 (1.5-◦C vertical
extent in the former vs. 2.5-◦C vertical extent in the latter, and
10-minutes extent in the former vs. 30-minutes extent in the lat-
ter). As with the results shown in Fig. 2, no RF power is going
to the gun.
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Fig. 15. A1-◦C step change in TCAV under the benchmark MPC. Note that
the scales are smaller than those of Fig. 2. These data were recorded as part of
a series of steps in the TCAV set point. Note that this is not a perfect 1-◦C step,
as there is an offset between the original TCAV set point and the final value it
obtained in the prior to step.

Fig. 16. Measured flow control valve and heater power actions.

Fig. 16 shows the measured FCV and HP actions, and Fig. 17
shows the requested FCV and HP actions. We see an initial
adjustment (the valve opens and the heater power decreases),
followed by an adjustment in the opposite direction to compen-
sate for the lower temperature of the water exiting the gun.

Overall, despite this being just a simple benchmark test,
the performance achieved was a substantial improvement
over that obtained with the pre-existing feed-forward/PI
controller.

Fig. 17. Requested flow control valve and heater power actions.

4) Limitations and Potential Improvements: First, improve-
ment could be made to the timing of control actions. The small
oscillations in T02 that start around the 4-minute mark are the
result of imperfect timing in the compensative actions for the
recirculating water. The oscillations were replicated in simula-
tion by introducing a mis-match in the timing of TOUT in the
plant relative to that in the model used for the MPC controller.
During training, the time delay between when the controller
issues a command, when the command is received by ACNET
(Fermilab’s main control system), and when the actuators in the
hardware respond were not accounted for.

Another limitation of the controller is that it used previ-
ous requested FCV and HP settings in the model, rather than
using measured values. Given how much the requested values
deviated from the measured values, the performance of the con-
troller could likely be improved by using the measured values
instead.

The controller also needs to be tested over the RF power
range of the cavity. The T02 model performs well under pow-
ered conditions, and thus in principle the MPC should be able
to compensate for temperature changes in the water exiting
the gun associated with RF power adjustments. However, the
component that converts the TCAV set point to a T02 set
point needs to be more carefully designed before this is imple-
mented for regular use. Steady state offsets in the modeling
could be accounted for by adding slow feedback to the com-
ponent that translates between TCAV and T02 under RF power.
Alternatively, additional training data under a wider variety of
RF power levels could be obtained, and ambient temperature
could also be included as an input. Because TCAV does have
a slow thermal response, an extension of this is to use a sec-
ond MPC to determine a desirable T02 trajectory (rather than a
single set point) or simply lump the whole system together in
one MPC.
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G. Future Work and Extensions To Pure NN Control

The future work at FAST falls into two categories:
1) Expansion of and improvement upon the benchmark

MPC
2) NN-centric schemes that build on (1)
The primary interest in (1) is that it can facilitate the learning

of good initial controllers in (2). A number of possible improve-
ments to the MPC are discussed in section H.4, but ultimately
for our purposes it just needs to be good enough to provide a
starting point for training. For control of the water entering the
gun, the benchmark controller is good enough. We are training
a NN to mimic the benchmark MPC behavior. This initial pol-
icy will subsequently be improved through additional training
during simulated interaction with the machine. Finally, it will
be experimentally tested. This module can then be extended to
direct resonance control using another MPC or a reinforcement
learning component.

Extending that approach further, we are creating a sepa-
rate MPC unit that determines trajectories for T02 and RF
power such that the requested operational RF power is reached
without significant increases in reflected power. This would
use resonant frequency (as measured by detuning) as the ref-
erence parameter. We will also examine using a NN-based
reinforcement learning controller directly from scratch for this
application (i.e. one that operates without the benefit of learning
an initial policy from the MPC).

At present, we are also working on resonance control for an
RFQ that will be used in the PXIE accelerator at Fermilab.

VI. CONCLUSION

There is a clear need for the development and validation
of reliable, adaptive control techniques for complex prob-
lems in particle accelerators. Achieving this objective becomes
particularly challenging as these systems achieve higher ener-
gies and intensities, are required to operate with ever-more
stringent tolerances on beam parameters, and are needed for
a rapidly growing range of applications with highly varied
requirements. Incorporating artificial intelligence and machine
learning techniques into particle accelerator control systems
could greatly assist the community in its effort to meet these
challenges.

The work at FAST provides just one example of how more
advanced control methods that include learned models and
planning can provide advantages over primarily reactive con-
trol paradigms. In that example, the presence of long, variable
time delays and multiple controllable parameters resulted in a
challenging control problem that was not handled effectively
by the existing feed-forward/PI controller. A relatively sim-
ple neural network-based model predictive controller was able
to substantially improve the control over the system, result-
ing in a ∼ 5x shorter setting time and virtually no overshoot
in the target parameter. Coupled with the previous work con-
ducted by our group at LCLS, the FERMI@Elettra FEL, and
Australian Synchrotron, it is apparent that modern AI- and
machine learning-based control techniques can be put to highly
effective use in particle accelerators.

Within artificial intelligence and machine learning, we high-
lighted neural networks specifically. Neural networks are highly
flexible tools that could be used in many ways to improve parti-
cle accelerator performance. They can be used to learn system
relationships (e.g. dynamic models), to do perform rapid com-
putations, and to act as controllers. Myriad advances over the
past decade have greatly improved the practicality of these
techniques.

Furthermore, accelerators are useful test-beds for neural
network-based control. By focusing simultaneously on incre-
mental development and experimental testing, actual problems
encountered in accelerator control can guide algorithmic devel-
opment, resulting in a suite of new techniques that are uniquely
well-suited to the field’s operational challenges.

We plan to continue our research in this area to develop
advanced controllers based on artificial intelligence and
machine learning for a wide variety of control problems found
in particle accelerators.
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